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Summary. This paper presents continued general discussion introduced in [1] on two methods for solving 
transportation problems: standard and network linear programming. Particular attention here is put on 
modeling and computing issues related to both methods. Simple illustrative example is used to 
demonstrate how transportation problem may be attacked by two related solvers, Simplex and Out-of-
kilter. Specific notes are given on knowledge analyst has to be armed with in order to be able to apply 
the network approach and use network methods and solvers. 
 

   
 
1.  INTRODUCTION 
 
This paper comprises experience gained through the application of two different methodologies for 
solving generalized closed transportation problem (TP). The first one is based on standard linear 
programming and use of well-known Simplex solver [2]. Hereafter this will be denoted as StdLP 
approach. The second methodology is based on network integer linear programming (NetLP approach) 
and Ford-Fulkerson’s Out-of-kilter algorithm [3]. Both solvers were appropriately programmed in 
FORTRAN 77. Related computer codes, entitled SX and OK respectively, are of the core type and 
implemented at Pentium 133 MHz computer. Core type here means that except true executive 
statements, which perform basic algorithms’ computations, all other statements are completely deleted 
to fasten codes’ compilation, linking and execution. This way programming proficiencies were reduced as 
much as possible, even some controversies may still exist. 
 
For the comparison purposes closed TP is selected and intently created so to be enough simple but to 
include typical transport situation with transient flows (via transferring nodes). The TP general 
formulation and notation is introduced in [1], and mathematical relations given hereafter are in full 
consistence with it. Methodological steps performed during both solving procedures (StdLP/Simplex and 
NetLP/Out-of-kilter) are briefly described in turn. 
 
 
2.  TP - THE PRIMER 
 
The typical generalized closed TP with 10 links and 6 nodes is shown on Fig. 1. In order to create similar 
starting position for solving the problem via StdLP and NetLP, it may be assumed that all nodes are both 
source and sink nodes. This obviously fits to either approach: if node is not really a source, it has a zero 
capacity; and if node is not a sink, its demand is zero. For given problem, out of 6 nodes, three nodes 
are only sources (1, 2 and 4), one is only a sink (6) and two are in the same time sources and sinks (3 
and 5). Nodes 3 and 5 are true transferring nodes. Source and sink capacities for nodes are represented 
by numbers in [,] parenthesis, respectively. Node characteristics summarized in Table 1 also indicate 
that total source capacity of 600 volumetric units of resource is equal to total sink capacity. The problem 
is closed, i.e. there will be neither surpluses nor deficits in the network. 
 
As far transporting links are concerned, they are identified by arrows, unit costs and amounts of flowing 
resource, Fig. 1. For example, link that connects nodes 1 and 4 (with direction from node 1 to node 4) 
has unit cost equal to 4. For a convenience, unit costs are indicated as numbers written near the origin 
of each particular link. Terms x1, x2, x10 denote volume of a resource flowing through links, and 
subscripts are the link identification numbers. For example, flow through the link 8 is x8 and unit cost of 
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this flow is 7; in this link flow may be maintained only from node 3 toward node 6. Links’ characteristics 
are given in Tab. 2. 
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Fig. 1  Generalized closed TP: The Primer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The problem to be solved is: Find the set of values (x1, x2, x10) which gives minimum total cost of 
distributing 600 units from all source to all sink points according to nodes’ capacities, links’ layouts and 
given unit costs of transport. Assume unrestricted links’ upper limits and lower limits set to zero. 
 

Table 1.  Generalized closed TP: Nodes 
Node 

(j) 
Source capacity  

(sj*) 
Sink capacity 

(dj*) 
1 100     0 
2 200     0 
3 100 200 
4 150     0 
5   50 100 
6     0 300 

Total 600 600 

Table 2.  Generalized closed TP: Links 
Link no. From node 

(i) 
To node 

(j) 
Unit flow cost  

(cij) 
1 1 3 5 
2 1 4 4 
3 2 3 3 
4 2 4 1 
5 2 5 1 
6 3 4 1 
7 5 4 2 
8 3 6 7 
9 5 6 6 
10 4 6 5 
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2.1.  Solution via StdLP  
 
Following the unique notation given on Fig. 1, due to model (6)-(8) given in [1] the linear program to be 
solved is: 
 
     Find:  F*  = min (5x1+ 4x2+3x3+x4+x5+x6+2x7+7x8+6x9+5x10)                         ...(1) 
 
     with balance conditions (at nodes): 
 
     0 + 100 = x1 + x2 + 0 
     0 + 200 = x3 + x4 + x5 + 0 
     x1 + x3 + 100 = x6 + x8 + 200                                                                         ... (2)   
     x2 + x4 + x6 + x7 + 150 = x10 + 0 
     x5 + 50 = x7 + x9 + 100 
     x8 + x9 + x10 + 0 = 300 
 
     and constraints (on links): 
 
     x1, x2, ..., x10 ≥  0 .                                                                                         ... (3)      
 
 
Relation (9) in [1] is clarified by total node capacities in Table 1. Rewriting relations (1)-(3) and adding 
artificial variables puts the original LP into the standard form: 
 
     Find:  F*=min [5x1+ 4x2+3x3+x4+x5+x6+2x7+7x8+6x9+5x10+  
                              +M(x11+x12+x13+x14+x15+x16)]                                               ...(4) 
 
     with balance conditions (at nodes): 
 
     x1 + x2                                                             + x11  =  100 
                   x3 + x4 + x5 +                                     + x12 =  200 
     x1            +x3                       -  x6             - x8                  + x13  =  100                          ... (5) 
            x2           + x4         + x6   + x7                      - x10   + x14  = -150 
                                  x5          - x7           - x9               + x15  =    50 
                                                       x8  + x9 + x10  + x16  =  300 
 
     and constraints (on links): 
 
     x1, x2, ..., x16 ≥  0                                                                                         ... (6)   
 
where x11, ..., x16 are artificial variables and M is arbitrarily selected positive large number. 
 
Standard linear program (4)-(6) may readily be solved by Simplex. After 6 steps algorithm produces 
unique optimal solution:  F* = Fmin = 2200;  x1*=100, x4* =150, x5*=50 and x10*=300; all other 
variables equal to zero. 
 
 
2.2.  Solution via NetLP  
 
To obtain network linear program for TP on Fig. 1 there is no need to write any equation. Due to 
modeling strategy described in [1] it is enough to create an oriented closed capacitated network and 
consider it as The Minimal Cost Flow Problem. In given example original network shown on Fig. 1 has to 
be supplemented by few additional nodes and links in such a manner to become closed. Resulting 
network may be denoted as artificial network, Fig. 2. It’s topology and parameters will be described in 
turn. 
 
The new network consists of two parts: (1) original network with 6 nodes and 10 links, and (2) 
additional network with 3 nodes and 10 links. The logic of including new nodes and links is described in 
details in [1], and the following comments serve to explain ’the network way of thinking’. 
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Fig. 2   NetLP formulation of an example TP (clarify Fig. 1) 
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Let analyze the situation at node 5 being a source and sink node at the same time. Two original links 
(numbered 7 and 9) leave this node, one link comes in from node 2 (numbered 5) and one additional 
link (numbered 15) comes in from node denoted as ’Source node’ (numbered 7). Additional link 
simulates source capacity at node 5. Having equal lower and upper limit (here 50 as specified in [] 
parenthesis), this link during solving procedure will permit transfer of exactly 50 units of resource. This 
means that optimal solution will for sure include optimal value x15*=50. Since 50 units must come to 
node 5 because link 15 dictates it, node 5 will have at least 50 available resource units for further 
distribution (through links 7, 9 and 17). Note that term ’at least 50’ here means that certain amount of 
resource may also come to node 5 through link 5 forming thus available amount of resource greater 
than 50. 
  
The link 17 belongs to the set of additional links. It leaves node 5 providing flow to additional node 
denoted as Sink node 8. Specified flow limits on this link [0,100] in fact model sink capacity of node 5. 
Lower limit is set to 0 to permit possible situation that sink capacity (in fact demand at node 5) will not 
be fulfilled to the maximum of 100. This setting is intently used to indicate modeling strategy when open 
generalized TP should be solved; in this case shortages at demand point 5 could occur. Of course, to 
provide sure satisfaction of demand at point 5, limits on link 17 should be equaled to 100, i.e. [100,100] 
should be specified instead of [0,100]. 
 
To summarize situation at node 5, two links model available resource at node for further distribution 
(links 15 and 5) and three links model the usage of available resource at node (link 17 provide 
satisfaction of demand located at node, and links 7 and 9 transfer the rest of resource to nodes 4 and 
6).  

Generally, the set of initial source capacity links connecting Source node 7 with all original nodes should 
be specified with appropriate limits analog to the one described for node 5. However, since node 6 has 
source capacity equal to zero, related link is avoided; it could be included with limits [0,0], which have 
no sense because flow through that link could not exist. The same logic applies for Sink node 8. At the 
most, six links should enter this node leaving set of original nodes. Here, three nodes (1, 2 and 4) have 
not specified demands (sink capacities) so related links are simply avoided. 

The link 19 represents total sink capacity of the network and its limits are specified as sums of 
respective limits on links entering Sink node 8. It may bring at maximum 600 units of resource to the 
Balance node 9. The link 20 represents total source capacity of all original nodes. It’s min/max flow 
limits are specified as sums of respective limits on links leaving Source node 7. Herein limits are 
[600,600] indicating that link 20 will transfer exactly 600 units of resource to Source node 7; at that 
point it will be divided into exact amounts and transferred through arcs 11-15 to appropriate original 
nodes (except node 6 where there is not source capacity). 

The role of additional nodes (7-9) and links (11-20) is obvious. They model node conditions with respect 
to their capacities and completely close initial network. It should be noted that nodes 7-9 have to be in 
balance (like all other nodes), which may be achieved only if all available source resource is sinking 
(used). 

To summarize, flows in additional network shall be maintained only as follows: 

• Links on source side of the network:  x11=100, x12=200, x13=100, x14=150, x15=50, and x20=600. 

• Links on sink side of the network:  x16=200, x17=100, x18=300, and x19=600. 

These flows are in fact prespecified and make the part of final, optimal solution. 

As far unit costs are considered, it is best to specify unit costs equal to zero for additional links 11-20 in 
order to eliminate their influence on extended criterion function. For given TP this is rational approach 
since in additional links flows should be maintained no matter what unit costs are. However, in open TP 
where deficit or sufficit of resource may occur, it could be opportune to define different (and even 
negative) unit costs for these links due to logic of preferencing certain demands in original network (see 
[1] for details). In this way it is possible to preserve all information contained in priority matrix of 
demand nodes. 

The Out-of-kilter algorithm applied to closed capacitated network depicted on Fig. 2c produces the same 
optimal solution as Simplex algorithm under StdLP procedure.            
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3. COMPUTATIONAL ISSUES 
 
To evaluate and compare selected procedures (StdLP vs. NetLP) and related algorithms (Simplex vs. 
Out-of-kilter), two original computer programs (SX and OK, respectively) were used. Written in 
FORTRAN 77 both programs were adapted for testing purposes only by extraction of all unnecessary 
statements. Special return codes were installed in both core programs at starting points of true 
computations. For SX it is the statement where algorithm seeks for ’basis’ variables; for OK it is the 
statement where labeling procedure starts. End of computation return codes were installed in both 
programs appropriately. In this way start/end switches in SX bounded exactly solving procedure, i.e. 
iterative process of generating simplex tables. Iterative process of balancing nodes (i.e. putting them 
into so called in-kilter status /4/) in OK was identified by similar two switches. To put both programs into 
same testing environment, manual data preparation is performed although original programs posses 
very sophisticated and user-friendly software solutions. 
 
Table 3 summarizes principal characteristics of both ’core version’ programs. Computing times are given 
for extremely simple generalized closed TP on Fig. 1 and 2c and therefore are provisional. However, 
original SX and OK were used for solving large-scale closed and opened TP of sizes up to 200 nodes and 
1000 links. All computer works were performed on Pentium 133MHz/32 MB RAM. Generally, OK is 4 
times faster than SX.   
 
        Table 3.  Computer programs characteristics 
 

           *Computing time could be measured only with 0.01 sec precision. 
 
 
4.  CONCLUSIONS 
 
The handling (modeling and solving) of transportation problems in operations research and systems 
analysis practice is usually faced with certain and important dilemmas. Probably the most important one 
is ’Which modeling strategy to choose?’. In order to stipulate discussion in this direction two alternatives 
are presented and evaluated: (1) Standard LP with Simplex algorithm as solver, and (2) Network 
(Integer) LP with Out-of-kilter solver. In latter case, appropriate transformation of the original TP into 
The Minimal Cost Flow Problem is assumed. 
 
Although selection of one among two offered alternatives is faced with many subjective judgments, 
recent investigations indicate greater flexibility of network LP approach over standard LP approach, 
particularly if large scale and/or dynamical TPs have to be solved [5,6,7]. As far hardware and software 
requirements are concerned, standard LP is still prevailing in practice, while network LP is more 
commercialized. An important reason why network modeling is still not so popular is that it is at some 
instances ’harder’ than standard modeling. The other reason seems to be recognizable lack of educated 
professionals to ensure effective promotion of this modern operational research approach in different 
areas of human activities. 
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